segunda-feira, 17 de dezembro de 2012
Forma Trigonométrica De Um Número Complexo.
Sabemos que um número complexo possui forma geométrica igual a z = a + bi, onde a recebe a denominação de parte real e b parte imaginária de z. Por exemplo, para o número complexo z = 3 + 5i, temos a = 3 e b = 5 ou Re(z) = 3 e Im (z) = 5. Os números complexos também possuem uma forma trigonométrica ou polar, que será demonstrada com base no argumento de z (para z ≠ 0).
Considere o número complexo z = a + bi, em que z ≠ 0, dessa forma temos que:cosӨ = a/p e senӨ = b/p. Essa relações podem ser escritas de outra forma, acompanhe:
cosӨ = a/p → a = p*cosӨ
senӨ = b/p → b = p*senӨ
Vamos substituir os valores de a e b no complexo z = a + bi.
z = p*cosӨ + p*senӨi → z = p*( cosӨ + i*senӨ)
Essa forma trigonométrica é de grande utilidade nos cálculos envolvendo potenciações e radiciações.
Exemplo 1
Represente o número complexo z = 1 + i na forma trigonométrica.
Resolução:
Temos que a = 1 e b = 1
.jpg)
A forma trigonométrica do complexo z = 1 + i é z = √2*(cos45º + sen45º * i).
Exemplo 2
Represente trigonometricamente o complexo z = –√3 + i.
Resolução:
a = –√3 e b = 1
.jpg)
A forma trigonométrica do complexo z = –√3 + i é z = 2*(cos150º + sen150º * i).
Considere o número complexo z = a + bi, em que z ≠ 0, dessa forma temos que:cosӨ = a/p e senӨ = b/p. Essa relações podem ser escritas de outra forma, acompanhe:
cosӨ = a/p → a = p*cosӨ
senӨ = b/p → b = p*senӨ
Vamos substituir os valores de a e b no complexo z = a + bi.
z = p*cosӨ + p*senӨi → z = p*( cosӨ + i*senӨ)
Essa forma trigonométrica é de grande utilidade nos cálculos envolvendo potenciações e radiciações.
Exemplo 1
Represente o número complexo z = 1 + i na forma trigonométrica.
Resolução:
Temos que a = 1 e b = 1
.jpg)
A forma trigonométrica do complexo z = 1 + i é z = √2*(cos45º + sen45º * i).
Exemplo 2
Represente trigonometricamente o complexo z = –√3 + i.
Resolução:
a = –√3 e b = 1
.jpg)
A forma trigonométrica do complexo z = –√3 + i é z = 2*(cos150º + sen150º * i).
Assista os Vídeos para melhorar seu aprendizado.
Plano De Argand Graus.
A cada número complexo z = a + bi, podemos associar um ponto P no plano cartesiano. No complexo podemos representar a parte real por um ponto no eixo real, e a parte imaginária por um ponto no eixo vertical, denominado eixo imaginário.
A este ponto P, correspondente ao complexo z = a +bi, chamamos de imagem ou afixo de z. Observe a representação da interpretação geométrica dos números complexos:
Atualmente, o plano dos números complexos é conhecido como plano de Argand-Gauss.
Com base no plano representado vamos calcular a distância p (letra grega: rô), entre os pontos O e P. Observe que basta aplicarmos o Teorema de Pitágoras no triângulo retângulo, dessa forma temos:
.jpg)
.jpg)
Exemplo
Calcule o módulo e o argumento do número complexo z = 1 + 2i.
Módulo
a = 1 e b = 2
.jpg)
Argumento
Ө = Arg(z)
A este ponto P, correspondente ao complexo z = a +bi, chamamos de imagem ou afixo de z. Observe a representação da interpretação geométrica dos números complexos:
Atualmente, o plano dos números complexos é conhecido como plano de Argand-Gauss.
Com base no plano representado vamos calcular a distância p (letra grega: rô), entre os pontos O e P. Observe que basta aplicarmos o Teorema de Pitágoras no triângulo retângulo, dessa forma temos:
.jpg)
O módulo de z é representado pela grandeza p, mas também pode ser representado por |z|.
A ângulo Ө (0 ≤ Ө < 2π), formado pelo eixo real e a reta do segmento O P, é chamado de argumento de z (z ≠ 0) e é indicado por Arg(z). Baseado nessas definições podemos estabelecer as seguintes relações na interpretação geométrica dos complexos:
.jpg)
Exemplo
Calcule o módulo e o argumento do número complexo z = 1 + 2i.
Módulo
a = 1 e b = 2
.jpg)
Argumento
Ө = Arg(z)

Portanto, o argumento de z é o arco cuja tangente é 2.
Veja como ficaria o gráfico representativo do número complexo z = 1 + 2i.
Assista o Vídeo Para melhorar seu aprendizado.
terça-feira, 11 de dezembro de 2012
Exercicios de Fixação de Numeros Complexos.
Questões Para Você Desenvolver.
01. O produto (5 + 7i) (3 - 2i) vale:
a) 1 + 11i
b) 1 + 31i
c) 29 + 11i
d) 29 - 11i
e) 29 + 31i
RESPOSTA: C
02. Se f(z) = z2 - z + 1, então f(1 - i) é igual a:
a) i
b) -i + 1
c) i - 1
d) i + 1
e) -i
RESPOSTA: C
03. (FUVEST) Sendo i a unidade imaginária (i2 = -1) pergunta-se: quantos números reais a existem para os quais (a + 1)4 é um número real?
a) 1
b) 2
c) 3
d) 4
e) infinitos
RESPOSTA: C
04. Sendo i a unidade imaginária o valor de i10 + i-100 é:
a) zero
b) i
c) -i
d) 1
e) -1
RESPOSTA: A
05. Sendo i a unidade imaginária, (1 - i )-2 é igual a:
a) 1
b) -i
c) 2i
d) -i/2
e) i/2
RESPOSTA: E
06. A potência (1 - i )16 equivale a:
a) 8
b) 16 - 4i
c) 16 - 16i
d) 256 - 16i
e) 256
RESPOSTA: E
07. Se os números complexos z1 = 2 - i e z2 = x + 1, x real e positivo, são tais que |z1 . z2|2 = 10 então x é igual a:
a) 5
b) 4
c) 3
d) 2
e) 1
RESPOSTA: E
08. O módulo do complexo cos a - i . sen a é:
a) -1
b) -i
c) i
d) i4
e) i5
RESPOSTA: D
09. Calcular as raízes quadradas do número complexo 5 - 12i.
RESOLUÇÃO: 3 - 2i; -3 + 2i
10. Achar o conjunto-verdade, em R, da equação x8 - 17x4 + 16 = 0.
RESOLUÇÃO: V = {1, i, -1, -i, 2, 2i, -2, -2i}
Outros Exercícios
1. Calcule as seguintes somas:
a) (2 + 5i) + (3 + 4i)
b) i + (2 - 5i)
2. Calcule as diferenças:
a) (2 + 5i) - (3 + 4i)
b) (1 + i) - (1 - i)
3. Calcule os seguintes produtos:
a) (2 + 3i) (3 - 2i)
b) (1 + 3i) (1 + i)
4. Escreva os simétricos dos seguintes
números complexos:
a) 3 + 4i b) -3 + i
c) 1 - i
d) -2 + 5i
5. Escreva os conjugados dos seguintes
números complexos:
a) 3 + 4i
b) 1 - i
6.
Efetue as seguintes divisões de
números complexos:
Assinar:
Postagens (Atom)