1)
.gif)
.gif)
2)
.gif)
Resposta:

3)
.gif)
Resposta:
.gif)
4)
.gif)
Resposta:
.gif)
5)
.gif)
Resposta:
.gif)
6)
.gif)
Resposta:
.gif)
Outros Exercícios
1) Sendo z = (m2 - 5m + 6) + (m2 - 1) i , determine m de modo que z seja um imaginário puro.
Solução: Para que o complexo z seja um imaginário puro, sua parte real deve ser nula ou seja, devemos ter
m2 - 5m + 6 = 0, que resolvida encontramos m=2 ou m=3.
m2 - 5m + 6 = 0, que resolvida encontramos m=2 ou m=3.
2) Determine a parte real do número complexo z = (1 + i)12 .
Solução: Observe que (1 + i)12 = [(1 + i)2]6 . Nestas condições, vamos desenvolver o produto notável
(1 + i)2 = 12 + 2.i + i2 = 1 + 2i -1 = 2i \ (1 + i)2 = 2i (isto é uma propriedade importante, que vale a pena ser memorizada).
(1 + i)2 = 12 + 2.i + i2 = 1 + 2i -1 = 2i \ (1 + i)2 = 2i (isto é uma propriedade importante, que vale a pena ser memorizada).
Substituindo na expressão dada, vem:
(1 + i)12 = [(1 + i)2]6 = (2i)6 = 26.i6 = 64.(i2)3 = 64.(-1)3 = - 64.
Portanto, o número complexo dado fica z = - 64 = - 64 + 0i e portanto sua parte real é igual a-64.
3) Determine a parte imaginária do número complexo z = (1 - i)200 .
Solução: Podemos escrever o complexo z como: z = [(1 - i)2]100 . Desenvolvendo o produto notável
(1 - i)2 = 12 - 2.i + i2 = 1 - 2i -1 = - 2i \ (1 - i)2 = - 2i (isto é uma propriedade importante, que merece ser memorizada).
(1 - i)2 = 12 - 2.i + i2 = 1 - 2i -1 = - 2i \ (1 - i)2 = - 2i (isto é uma propriedade importante, que merece ser memorizada).
Substituindo na expressão dada, vem:
z = (- 2i)100 = (- 2)100. i100 = 2100 . i100 = 2100 . ( i2 )50 = 2100. (- 1)50 = 2100 . 1 = 2100.
Logo, o número complexo z é igual a 2100 e portanto um número real. Daí concluímos que a sua parte imaginária é zero.
Nenhum comentário:
Postar um comentário